FLASH MEMORY

CMOS

$2 \mathrm{M}(256 \mathrm{~K} \times 8 / 128 \mathrm{~K} \times 16)$ BIT

MBM29F200TA-70/-90/-12/MBM29F200BA-70/-90/-12

- FEATURES

- Single 5.0 V read, write, and erase

Minimizes system level power requirements

- Compatible with JEDEC-standard commands

Uses same software commands as E2PROMs

- Compatible with JEDEC-standard world-wide pinouts

48-pin TSOP (Package suffix: PFTN - Normal Bend Type, PFTR - Reversed Bend Type) 44-pin SOP (Package suffix: PF)

- Minimum 100,000 write/erase cycles
- High performance

70 ns maximum access time

- Sector erase architecture

One 16 K byte, two 8 K bytes, one 32 K byte, and three 64 K bytes.
Any combination of sectors can be concurrently erased. Also supports full chip erase.

- Boot Code Sector Architecture

T = Top sector
B = Bottom sector

- Embedded Erase ${ }^{\text {TM }}$ Algorithms

Automatically pre-programs and erases the chip or any sector

- Embedded Program ${ }^{\text {TM }}$ Algorithms

Automatically write and verifies data at specified address

- Data Polling and Toggle Bit feature for detection of program or erase cycle completion
- Ready/BUSY output (RY/信)

Hardware method for detection of program or erase cycle completion.

- Low Vcc write inhibit ≤ 3.2 V
- Hardware RESET pin

Resets internal state machine to the read mode

- Sector protection

Hardware method disables any combination of sectors from write or erase operations

- Temporary sector unprotection

Hardware method temporarily enable any combination of sectors from write or erase operations

- Erase Suspend/Resume

Suspends the erase operation to allow a read in another sector within the same device

PACKAGE

48-pin Plastic TSOP

GENERAL DESCRIPTION

The MBM29F200TA/BA is a 2 M -bit, 5.0 V-only Flash memory organized as 256 K bytes of 8 bits each or 128 K words of 16 bits each. The MBM29F200TA/BA is offered in a 48-pin TSOP and 44-pin SOP packages. This device is designed to be programmed in-system with the standard system 5.0 V Vcc supply. A 12.0 V Vpp is not required for write or erase operations. The device can also be reprogrammed in standard EPROM programmers. The MBM29F200TA/BA is erased when shipped from the factory.
The standard MBM29F200TA/BA offers access times between $70 \mathrm{~ns}, 90 \mathrm{~ns}$ and 120 ns , allowing operation of high-speed microprocessors without wait states. To eliminate bus contention the device has separate chip enable $(\overline{\mathrm{CE}})$, write enable ($\overline{\mathrm{WE}}$), and output enable ($\overline{\mathrm{OE}})$ controls.

The MBM29F200TA/BA is pin and command set compatible with JEDEC standard 2M-bit E²PROMs. Commands are written to the command register using standard microprocessor write timings. Register contents serve as input to an internal state-machine which controls the erase and programming circuitry. Write cycles also internally latch addresses and data needed for the programming and erase operations. Reading data out of the device is similar to reading from 12.0 V Flash or EPROM devices.
The MBM29F200TA/BA is programmed by executing the program command sequence. This will invoke the Embedded Program Algorithm which is an internal algorithm that automatically times the program pulse widths and verifies proper cell margin. Typically, each sector can be programmed and verified in less than 0.5 seconds. Erase is accomplished by executing the erase command sequence. This will invoke the Embedded Erase Algorithm which is an internal algorithm that automatically preprograms the array if it is not already programmed before executing the erase operation. During erase, the device automatically times the erase pulse widths and verifies proper cell margin.
A sector is typically erased and verified in 1 second (if already completely preprogrammed.)
This device also features a sector erase architecture. The sector mode allows each sector to be erased and reprogrammed without affecting other sectors.
The device features single 5.0 V power supply operation for both read and write functions. Internally generated and regulated voltages are provided for the program and erase operations. A low Vcc detector automatically inhibits write operations on the loss of power. The end of program or erase is detected by Data Polling of DQ7, by the Toggle Bit feature on DQ_{6}, or the $\mathrm{RY} / \overline{\mathrm{BY}}$ pin. Once the end of a program or erase cycle has been completed, the device internally resets to the read mode.

Fujitsu's Flash technology combines years of EPROM and E2PROM experience to produce the highest levels of quality, reliability and cost effectiveness. The MBM29F200TA/BA memory electrically erases the entire chip or all bits within a sector simultaneously via Fowler-Nordhiem tunneling. The bytes/words are programmed one byte/word at a time using the EPROM programming mechanism of hot electron injection.

FLEXIBLE SECTOR-ERASE ARCHITECTURE

- One 16 K byte, two 8 K bytes, one 32 K byte, and three 64 K bytes
- Individual-sector, multiple-sector, or bulk-erase capability
- Individual or multiple-sector protection is user definable.

	($\times 8$)	(×16)		($\times 8$)	(×16)
16K byte	$3 F F F F H$ 1 FFFFH $3 B F F F H$ 1 DFFFH $39 F F F H$ 1 CFFFH $37 F F F H$ 1 BFFFH $2 F F F F H$ $17 F F F H$ $1 F F F F H$ $0 F F F F H$ $0 F F F F H$ $07 F F F H$ 00000 H 00000 H		64K byte	3FFFFH	1FFFFH
8K byte			64 K byte	2FFFFH	17FFFH
8K byte			64K byte	1FFFFH	OFFFFH
32K byte			32K byte	OFFFFFH	07FFFH
64K byte			8K byte	07FFFH	O3FFFH
64K byte			8K byte	FF	02FFFH
64K byte			16K byte		
MBM29F20	ctor Archi	cture	BM29F200	tor Archi	ture

PRODUCT SELECTOR GUIDE

Family Part No.	MBM29F200TA/BA		
Ordering Part No.	-70	-90	-12
Max. Address Access Time (ns)	70	90	120
Max. CE Access Time (ns)	70	90	120
Max. OE Access Time (ns)	30	35	50

BLOCK DIAGRAM

CONNECTION DIAGRAMS

LOGIC SYMBOL

Table 1 MBM29F200TA/BA Pin Configuration

Pin	Function
$\mathrm{A}_{-1}, \mathrm{~A}_{0}$ to A_{16}	Address Inputs
DQ_{0} to DQ_{15}	Data Inputs/Outputs
$\overline{\mathrm{CE}}$	Chip Enable
$\overline{\mathrm{OE}}$	Output Enable
$\overline{\mathrm{WE}}$	Write Enable
RY/BY	Ready-Busy Output
$\overline{\mathrm{RESET}}$	Hardware Reset Pin/Sector Protection Unlock
$\overline{\mathrm{BYTE}}$	Selects 8-bit or 16-bit mode N.C.
Vss Internal Connection	
Vovice Ground	
Device Power Supply	
$(5.0$ V $\pm 10 \%)$	

MBM29F200TA-70/-90/-12/MBM29F200BA-70/-90/-12

ORDERING INFORMATION

Standard Products

Fujitsu standard products are available in several packages. The order number is formed by a combination of:

Table 2 MBM29F200TA/BA User Bus Operations ($\overline{\text { BYTE }}=$ V $_{\text {н }}$)

Operation	$\overline{C E}$	$\overline{O E}$	WE	A	A_{1}	A_{6}	A9	$D Q_{0}$ to DQ_{15}	RESET
Auto-Select Manufacturer Code (1)	L	L	H	L	L	L	VID	Code	H
Auto-Select Device Code (1)	L	L	H	H	L	L	VID	Code	H
Read (3)	L	L	H	A0	A_{1}	A_{6}	A9	Dout	H
Standby	H	X	X	X	X	X	X	HIGH-Z	H
Output Disable	L	H	H	X	X	X	X	HIGH-Z	H
Write	L	H	L	A	A_{1}	A_{6}	A9	Din	H
Enable Sector Protection (2)	L	VID	Ч	X	X	L	VID	X	H
Verify Sector Protection (2)	L	L	H	L	H	L	Vio	Code	H
Temporary Sector Unprotection	X	X	X	X	X	X	X	X	VID
Reset (Hardware)/Standby	X	X	X	X	X	X	X	HIGH-Z	L

Table 3 MBM29F200TA/BA User Bus Operations ($\overline{\text { BYTE }}=\mathrm{V}_{\mathrm{LL}}$)

Operation	$\overline{C E}$	OE	WE	$\underset{/ \mathbf{A}_{15}}{\mathrm{DQ}_{15}}$	A0	A_{1}	A6	A9	$D Q_{0}$ to ${ }^{\text {D }}{ }_{7}$	RESET
Auto-Select Manufacturer Code (1)	L	L	H	X	L	L	L	VID	Code	H
Auto-Select Device Code (1)	L	L	H	X	H	L	L	VID	Code	H
Read (3)	L	L	H	A-1	A0	A_{1}	A_{6}	A9	Dout	H
Standby	H	X	X	X	X	X	X	X	HIGH-Z	H
Output Disable	L	H	H	X	X	X	X	X	HIGH-Z	X
Write	L	H	L	A-1	Ao	A_{1}	A_{6}	A9	Din	H
Enable Sector Protection (2)	L	VID	Ч	X	X	X	L	VID	X	H
Verify Sector Protection (2)	L	L	H	X	L	H	L	VID	Code	H
Temporary Sector Unprotection	X	X	X	X	X	X	X	X	X	VID
Reset (Hardware)/Standby	X	X	X	X	X	X	X	X	HIGH-Z	L

Legend: $L=V_{I L}, H=V_{I H}, X=V_{I L}$ or $V_{I H}, \quad V_{=}$Pulse Input. See DC Characteristics for voltage levels.
Notes: 1. Manufacturer and device codes may also be accessed via a command register write sequence. Refer to Table 7.
2. Refer to the section on Sector Protection.
3. $\overline{W E}$ can be $V_{I L}$ if $\overline{O E}$ is $V_{I L}, \overline{O E}$ at $V_{I H}$ initiates the write operations.

Read Mode

The MBM29F200TA/BA has two control functions which must be satisfied in order to obtain data at the outputs. $\overline{C E}$ is the power control and should be used for a device selection. $\overline{O E}$ is the output control and should be used to gate data to the output pins if a device is selected.
Address access time (t_{Ac}) is equal to the delay from stable addresses to valid output data. The chip enable access time (tcE) is the delay from stable addresses and stable $\overline{\mathrm{CE}}$ to valid data at the output pins. The output enable access time is the delay from the falling edge of $\overline{O E}$ to valid data at the output pins (assuming the addresses have been stable for at least tacc-toe time).

Standby Mode

There are two ways to implement the standby mode on the MBM29F200TA/BA devices, one using both the $\overline{C E}$ and RESET pins; the other via the RESET pin only.
When using both pins, a CMOS standby mode is achieved with $\overline{\mathrm{CE}}$ and $\overline{\operatorname{RESET}}$ inputs both held at $\mathrm{V}_{\mathrm{cc}} \pm 0.3 \mathrm{~V}$. Under this condition the current is typically reduced to less than $100 \mu \mathrm{~A}$. A TTL standby mode ($\overline{\mathrm{CE}}$ and $\overline{\mathrm{RESET}}$ pins held at $\mathrm{V}_{(H)}$, when the current required is reduced to approximately 1 mA . The device can be read with standard access time (tcE) from either of these standby modes.

When using the $\overline{\operatorname{RESET}}$ pin only, a CMOS standby mode is achieved with $\overline{\operatorname{RESET}}$ input held at $\mathrm{V}_{\text {ss }} \pm 0.3 \mathrm{~V}$ ($\overline{\mathrm{CE}}$ $=$ " H " or " L "). Under this condition the current is consumed is less than $100 \mu \mathrm{~A}$. A TTL standby mode (RESET pin held at V_{IL} ($\overline{\mathrm{CE}}=$ " H " or " L "), when the current required is reduced to approximately 1 mA . Once the $\overline{\mathrm{RESET}}$ pin is taken high, the device requires 500 ns of wake up time before outputs are valid for read access.
In the standby mode the outputs are in the high impedance state, independent of the $\overline{\mathrm{OE}}$ input.

Output Disable

With the $\overline{\mathrm{OE}}$ input at a logic high level $\left(\mathrm{V}_{\boldsymbol{H}}\right)$, output from the device is disabled. This will cause the output pins to be in a high impedance state.

Autoselect

The autoselect mode allows the reading out of a binary code from the device and will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional over the entire temperature range of the device.
To activate this mode, the programming equipment must force $\mathrm{V}_{\text {ID }}(11.5 \mathrm{~V}$ to 12.5 V) on address pin A9. Two identifier bytes may then be sequenced from the device outputs by toggling address A_{0} from $V_{\text {IL }}$ to $V_{\text {IH. }}$. All addresses are don't cares except $\mathrm{A}_{0}, \mathrm{~A}_{1}$, and A_{6}.
The manufacturer and device codes may also be read via the command register, for instances when the MBM29F200TA/BA is erased or programmed in a system without access to high voltage on the A9 pin. The command sequence is illustrated in Table 7 (refer to Autoselect Command section).
$\mathrm{A}_{0}=\mathrm{V}_{\|}$represents the manufacturer's code (Fujitsu $=04 \mathrm{H}$) and $\mathrm{A}_{0}=\mathrm{V}_{\mathbb{1}}$ the device identifier code (MBM29F200TA $=51 \mathrm{H}$ and MBM29F200BA $=57 \mathrm{H}$ for $\times 8$ mode; MBM29F200TA $=2251 \mathrm{H}$ and MBM29F200BA $=2257 \mathrm{H}$ for $\times 16$ mode). All identifires for manufacturer and device will exhibit odd parity with DQ7 defined as the parity bit. In order to read the proper device codes when executing the autoselect, A_{1} must be V_{L} (see Tables 4.1 and 4.2).

Table 4.1 MBM29F200TA/BA Sector Protection Verify Autoselect Codes

Type			A_{12} to A_{16}	A_{6}	A_{1}	Ao	Code (HEX)
Manufacturer's Code			X	VIL	VIL	VIL	04H
MBM29F200A Device Code	MBM29F200TA	Byte	X	VIL	VIL	$\mathrm{V}_{\text {IH }}$	51H
		Word					2251H
	MBM29F200BA	Byte	X	VIL	VIL	V H	57H
		Word					2257H
Sector Protection			Sector Addresses	VIL	VIH	VIL	01H*

*: Outputs 01 H at protected sector addresses and outputs 00 H at unprotected sector addresses.
Table 4.2 Expanded Autoselect Code Table

Type		Code	DQ ${ }_{15}$	DQ14	DQ13	DQ ${ }_{12}$	DQ 11	DQ10	DQ9	DQ_{8}	DQ ${ }_{7}$	DQ	DQ	DQ	DQ_{3}	DQ	DQ	DQ
Manufacturer's Code		04H	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Device Code	MBM29F200TA (B) (W)	$\begin{array}{r} 51 \mathrm{H} \\ 2251 \mathrm{H} \end{array}$	$\begin{gathered} \mathrm{A}-1 \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{HI}-\mathrm{Z} \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{H}-\mathrm{Z} \\ 1 \end{gathered}$	$\begin{gathered} \mathrm{HI}-\mathrm{Z} \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{HI}-\mathrm{Z} \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{HI}-\mathrm{Z} \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{HI}-\mathrm{Z} \\ 1 \end{gathered}$	$\begin{gathered} \mathrm{HI}-\mathrm{Z} \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	1 1
	MBM29F200BA (B) (W)	$\begin{array}{r} 57 \mathrm{H} \\ 2257 \mathrm{H} \end{array}$	$\begin{gathered} A_{-1} \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{HI}-\mathrm{Z} \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{HI}-\mathrm{Z} \\ 1 \end{gathered}$	$\begin{gathered} \mathrm{HI}-\mathrm{Z} \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{HI}-\mathrm{Z} \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{HI}-\mathrm{Z} \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{HI}-\mathrm{Z} \\ 1 \end{gathered}$	$\begin{gathered} \mathrm{HI}-\mathrm{Z} \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 1
Sector Protection		01H	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

(B): Byte mode
(W): Word mode

Write

Device erasure and programming are accomplished via the command register. The contents of the register serve as inputs to the internal state machine. The state machine outputs dictate the function of the device.
The command register itself does not occupy any addressable memory location. The register is a latch used to store the commands, along with the address and data information needed to execute the command. The command register is written by bringing $\overline{\mathrm{WE}}$ to V_{IL}, while $\overline{\mathrm{CE}}$ is at V_{IL} and $\overline{\mathrm{OE}}$ is at V_{IH}. Addresses are latched on the falling edge of $\overline{W E}$ or $\overline{C E}$, whichever happens later; while data is latched on the rising edge of $\overline{W E}$ or $\overline{C E}$, whichever happens first. Standard microprocessor write timings are used.
Refer to AC Write Characteristics and the Erase/Programming Waveforms for specific timing parameters.

Sector Protection

The MBM29F200TA/BA features hardware sector protection. This feature will disable both program and erase operations in any number of sectors (0 through 6). The sector protection feature is enabled using programming equipment at the user's site. The device is shipped with all sectors unprotected.

To activate this mode, the programming equipment must force V_{ID} on address pin A_{9} and control pin $\overline{\mathrm{OE}}$, (suggest $\left.\mathrm{V}_{10}=11.5 \mathrm{~V}\right), \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$, and $\mathrm{A}_{6}=\mathrm{V}_{\mathrm{IL}}$. The sector addresses ($\mathrm{A}_{16}, \mathrm{~A}_{15}, \mathrm{~A}_{14}, \mathrm{~A}_{13}$, and A_{12}) should be set to the sector to be protected. Tables 5 and 6 define the sector address for each of the seven (7) individual sectors. Programming of the protection circuitry begins on the falling edge of the WE pulse and is terminated with the rising edge of the same. Sector addresses must be held constant during the WE pulse. Refer to figures 14 and 20 for sector protection waveforms and algorithm.

To verify programming of the protection circuitry, the programming equipment must force $\mathrm{V}_{I D}$ on address pin A_{9} with $\overline{C E}$ and $\overline{O E}$ at $V_{I L}$ and $\overline{W E}$ at $V_{1 H}$. Scanning the sector addresses ($A_{16}, A_{15}, A_{14}, A_{13}$, and A_{12}) while (A_{6}, A_{1}, $\left.A_{0}\right)=(0,1,0)$ will produce a logical " 1 " code at device output DQ_{0} for a protected sector. Otherwise the device will produce 00 H for unprotected sector. In this mode, the lower order addresses, except for A_{0}, A_{1}, and A_{6} are don't care. Address locations with $\mathrm{A}_{1}=\mathrm{V}_{\mathrm{IL}}$ are reserved for Autoselect manufacturer and device codes.

It is also possible to determine if a sector is protected in the system by writing an Autoselect command. Performing a read operation at the address location $\mathrm{XX02H}$, where the higher order addresses ($\mathrm{A}_{16}, \mathrm{~A}_{15}, \mathrm{~A}_{14}, \mathrm{~A}_{13}$, and A_{12}) are the sector address will produce a logical "1" at DQ for a protected sector. See Table 4.1 and 4.2 for Autoselect codes.

Temporary Sector Unprotection

This feature allows temporary unprotection of previously protected sectors of the MBM29F200TA/BA device in order to change data. The Sector Unprotection mode is activated by setting the RESET pin to high voltage (12 V). During this mode, formerly protected sectors can be programmed or erased by selecting the sector addresses. Once the 12 V is taken away from the RESET pin, all the previously protected sectors will be protected again.

Table 5 Sector Address Tables (MBM29F200TA)

Sector Address	\mathbf{A}_{16}	\mathbf{A}_{15}	\mathbf{A}_{14}	\mathbf{A}_{13}	\mathbf{A}_{12}	Address Range
SA0	0	0	X	X	X	00000 h to 0FFFFh
SA1	0	1	X	X	X	10000 h to 1FFFFh
SA2	1	0	X	X	X	20000 h to 2FFFFh
SA3	1	1	0	X	X	30000 h to 37FFFh
SA4	1	1	1	0	0	38000 h to 39FFFh
SA5	1	1	1	0	1	3A000h to 3BFFFh
SA6	1	1	1	1	X	3C000h to 3FFFFh

Table 6 Sector Address Tables (MBM29F200BA)

Sector Address	\mathbf{A}_{16}	\mathbf{A}_{15}	\mathbf{A}_{14}	\mathbf{A}_{13}	\mathbf{A}_{12}	Address Range
SA0	0	0	0	0	X	00000 h to 03FFFh
SA1	0	0	0	1	0	04000 h to 05FFFh
SA2	0	0	0	1	1	06000 h to 07FFFh
SA3	0	0	1	X	X	08000 h to 0FFFFh
SA4	0	1	X	X	X	10000 h to 1FFFFh
SA5	1	0	X	X	X	20000 h to 2FFFFh
SA6	1	1	X	X	X	30000 h to $3 F F F F h$

Table 7 MBM29F200TA/BA Command Definitions

Command Sequence		Bus Write Cycles Req'd	First Bus Write Cycle		SecondBusWrite Cycle		Third Bus Write Cycle		Fourth Bus Read/Write Cycle		Fifth Bus Write Cycle		Sixth Bus Write Cycle		
		Addr.	Data												
Read/Reset*	Word		1	XXXH	FOH	-	-	-	-	-	-	-	-	-	-
Read/Reset*	Word	3	$\begin{array}{\|c\|} \hline 5555 \mathrm{H} \\ \hline \text { AAAAH } \\ \hline \end{array}$	AAH	$\begin{array}{\|l\|} \hline 2 \mathrm{AAAH} \\ \hline 5555 \mathrm{H} \end{array}$	55H	$\begin{array}{\|l\|} \hline 5555 \mathrm{H} \\ \hline \text { AAAAH } \\ \hline \end{array}$	FOH	RA	RD	-	-	-	-	
Autoselect	Word	3	$\begin{array}{\|c\|} \hline 5555 \mathrm{H} \\ \hline \text { AAAAH } \\ \hline \end{array}$	AAH	$\begin{array}{\|c\|} \hline \text { 2AAAH } \\ \hline 5555 \mathrm{H} \\ \hline \end{array}$	55H	$\begin{array}{\|c\|} \hline 5555 \mathrm{H} \\ \hline \text { AAAAH } \\ \hline \end{array}$	90H	-	-	-	-	-	-	
Program	Word	4	5555H AAAAH	AAH	2AAAH	55H	$\begin{array}{\|c\|} \hline 5555 \mathrm{H} \\ \hline \text { AAAAH } \\ \hline \end{array}$	AOH	PA	PD	-	-	-	-	
Chip Erase	Word	6	$\begin{array}{\|c\|} \hline 5555 \mathrm{H} \\ \hline \text { AAAAH } \\ \hline \end{array}$	AAH	$\begin{array}{\|l\|} \hline \text { 2AAAH } \\ \hline 5555 \mathrm{H} \\ \hline \end{array}$	55H	$\begin{array}{\|c\|} \hline 5555 \mathrm{H} \\ \hline \text { AAAAH } \\ \hline \end{array}$	80H	$\begin{array}{\|l\|} \hline 5555 \mathrm{H} \\ \hline \text { AAAAH } \\ \hline \end{array}$	AAH	$\begin{array}{\|l\|} \hline \text { 2AAAH } \\ \hline \text { 5555 } \end{array}$	55H	$\begin{array}{\|c\|} \hline 5555 \mathrm{H} \\ \hline \text { AAAAH } \\ \hline \end{array}$	10H	
Sector Erase	$\begin{array}{\|c\|} \hline \text { Word } \\ \hline \text { Byte } \\ \hline \end{array}$	6	5555H	AAH	$\begin{array}{\|l\|} \hline \text { 2AAAH } \\ \hline 5555 \mathrm{H} \\ \hline \end{array}$	55H	$\begin{array}{\|c\|} \hline 5555 \mathrm{H} \\ \hline \text { AAAAH } \\ \hline \end{array}$	80H	$\begin{array}{\|l\|} \hline 5555 H \\ \hline \text { AAAAH } \\ \hline \end{array}$	AAH	$\begin{array}{\|c\|} \hline \text { 2AAAH } \\ \hline 5555 \mathrm{H} \end{array}$	55H	SA	30 H	
Sector Erase Suspend			Erase can be suspended during sector erase with Addr ("H" or "L"). Data (BOH)												
Sector Erase Resume			Erase can be resumed after suspend with Addr ("H" or "L"). Data (30H)												

Notes: 1. Address bits A_{15} and $\mathrm{A}_{16}=\mathrm{X}=\mathrm{H}$ or L for all address commands except for Program Address (PA) and Sector Address (SA).
2. Bus operations are defined in Table 2 and 3.
3. $R A=$ Address of the memory location to be read.
$\mathrm{PA}=$ Address of the memory location to be programmed. Addresses are latched on the falling edge of the WE pulse.
$S A=A d d r e s s$ of the sector to be erased. The combination of $A_{16}, A_{15}, A_{14}, A_{13}$, and A_{12} will uniquely select any sector.
4. $R D=$ Data read from location RA during read operation.
$P D=$ Data to be programmed at location PA. Data is latched on the falling edge of WE.
5. The system should generate the following address patterns:

Word Mode: 5555H or 2AAAH to addresses A_{0} to A_{14}
Byte Mode: AAAAH or 5555H to addresses A_{-1} to A_{14}
6. Both Read/Reset commands are functionally equivalent, resetting the device to the read mode.
*: Either of the two reset commands will reset the device.

Command Definitions

Device operations are selected by writing specific address and data sequences into the command register. Writing incorrect address and data values or writing them in the improper sequence will reset the device to read mode. Table 7 defines the valid register command sequences. Note that the Erase Suspend (BOH) and Erase Resume (30H) commands are valid only while the Sector Erase operation is in progress. Moreover both Read/ Reset commands are functionally equivalent, resetting the device to the read mode. Please note that commands are always written at DQ_{0} to DQ_{7} and DQ_{8} to DQ_{15} bits are ignored.

Read/Reset Command

The read or reset operation is initiated by writing the read/reset command sequence into the command register. Microprocessor read cycles retrieve array data from the memory. The device remains enabled for reads until the command register contents are altered.

The device will automatically power-up in the read/reset state. In this case, a command sequence is not required to read data. Standard microprocessor read cycles will retrieve array data. This default value ensures that no spurious alteration of the memory content occurs during the power transition. Refer to the AC Read Characteristics and Waveforms for the specific timing parameters.

Autoselect Command

Flash memories are intended for use in applications where the local CPU alters memory contents. As such, manufacture and device codes must be accessible while the device resides in the target system. PROM programmers typically access the signature codes by raising Ag to a high voltage. However, multiplexing high voltage onto the address lines is not generally desired system design practice.
The device contains an autoselect command operation to supplement traditional PROM programming methodology. The operation is initiated by writing the autoselect command sequence into the command register. Following the command write, a read cycle from address XXOOH retrieves the manufacture code of 04 H . A read cycle from address XX01H for $\times 16$ ($\mathrm{XX02H}$ for $\times 8$) returns the device code (MBM29F200TA $=51 \mathrm{H}$ and MBM29F200BA $=57 \mathrm{H}$ for $\times 8$ mode MBM29F200TA $=2251 \mathrm{H}$ and MBM29F200BA $=2257 \mathrm{H}$ for $\times 16$ mode). (See Tables 4.1 and 4.2.)

All manufacturer and device codes will exhibit odd parity with DQ7 defined as the parity bit.
Sector state (protection or unprotection) will be informed by address XX02H for $\times 16$ (XX04H for $\times 8$).
Scanning the sector addresses ($A_{16}, A_{15}, A_{14}, A_{13}$ and A_{12}) while ($\left.A_{6}, A_{1}, A_{0}\right)=(0,1,0)$ will produce a logical " 1 " at device output DQ_{0} for a protected sector.

To terminate the operation, it is necessary to write the read/reset command sequence into the register, and also to write the autoselect command during the operation, execute it after writing read/reset command sequence.

Byte/Word Programming

The device is programmed on a byte-by-byte (or word-by-word) basis. Programming is a four bus cycle operation. There are two "unlock" write cycles. These are followed by the program set-up command and data write cycles. Addresses are latched on the falling edge of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$, whichever happens later and the data is latched on the rising edge of $\overline{C E}$ or $\overline{W E}$, whichever happens first. The rising edge of $\overline{C E}$ or $\overline{W E}$ (whichever happens first) begins programming. Upon executing the Embedded Program Algorithm command sequence, the system is not required to provide further controls or timings. The device will automatically provide adequate internally generated program pulses and verify the programmed cell margin.

The automatic programming operation is completed when the data on DQ_{7} is equivalent to data written to this bit (see Write Operation Status section) at which time the device returns to the read mode and addresses are no longer latched. Therefore, the device requires that a valid address to the device be supplied by the system at this particular instance of time. Hence, Data Polling must be performed at the memory location which is being programmed.
Any commands written to the chip during this period will be ignored. If operating hardware reset during the programming, it is impossible to guarantee the data are being written.
Programming is allowed in any sequence and across sector boundaries. Beware that a data " 0 " cannot be programmed back to a " 1 ". Attempting to do so may either hang up the device, or result in an apparent success according to the data polling algorithm but a read from reset/read mode will show that the data is still " 0 ". Only erase operations can convert " 0 "s to " 1 "s.
Figure 16 illustrates the Embedded Programming Algorithm using typical command strings and bus operations.

Chip Erase

Chip erase is a six bus cycle operation. There are two "unlock" write cycles. These are followed by writing the "set-up" command. Two more "unlock" write cycles are then followed by the chip erase command.
Chip erase does not require the user to program the device prior to erase. Upon executing the Embedded Erase ${ }^{\top \mathrm{M}}$ Algorithm command sequence the device automatically will program and verify the entire memory for an all zero
data pattern prior to electrical erase. The system is not required to provide any controls or timings during these operations.
The automatic erase begins on the rising edge of the last WE pulse in the command sequence and terminates when the data on DQ_{7} is " 1 " (see Write Operation Status section) at which time the device returns to read the mode.

Figure 17 illustrates the Embedded Erase Algorithm using typical command strings and bus operations.

Sector Erase

Sector erase is a six bus cycle operation. There are two "unlock" write cycles. These are followed by writing the "set-up" command. Two more "unlock" write cycles are then followed by the sector erase command. The sector address (any address location within the desired sector) is latched on the falling edge of $\overline{W E}$, while the command (Data $=30 \mathrm{H}$) is latched on the rising edge of $\overline{W E}$. A time-out of $50 \mu \mathrm{~s}$ from the rising edge of the last sector erase command will initiate the sector erase command(s).

Multiple sectors may be erased concurrently by writing the six bus cycle operations as described above. This sequence is followed with writes of the Sector Erase command to addresses in other sectors desired to be concurrently erased. The time between writes must be less than $50 \mu \mathrm{~s}$, otherwise that command will not be accepted and erasure will start. It is recommended that processor interrupts be disabled during this time to guarantee this condition. The interrupts can be re-enabled after the last Sector Erase command is written. A time-out of $50 \mu \mathrm{~s}$ from the rising edge of the last $\overline{\mathrm{WE}}$ will initiate the execution of the Sector Erase command(s). If another falling edge of the $\overline{W E}$ occurs within the 50μ s time-out window the timer is reset (Monitor DQ_{3} to determine if the sector erase timer window is still open, see section DQ_{3}, Sector Erase Timer). Any command other than Sector Erase or Erase Suspend during this time-out period will reset the device to read mode, ignoring the previous command string. Resetting the device once execution has begun will corrupt the data in that sector. In that case, restart the erase on those sectors and allow them to complete. (Refer to the Write Operation Status section for Sector Erase Timer operation.) Loading the sector erase buffer may be done in any sequence and with any number of sectors (0 to 6).

Sector erase does not require the user to program the device prior to erase. The device automatically programs all memory locations in the sector(s) to be erased prior to electrical erase. When erasing a sector or sectors the remaining unselected sectors are not affected. The system is not required to provide any controls or timings during these operations.

The automatic sector erase begins after the 50μ s time out from the rising edge of the $\overline{\mathrm{WE}}$ pulse for the last sector erase command pulse and terminates when the data on DQ7 is "1" (see Write Operation Status section) at which time the device returns to the read mode. $\overline{\text { Data }}$ polling must be performed at an address within any of the sectors being erased.

Figure 17 illustrates the Embedded Erase Algorithm using typical command strings and bus operations.

Erase Suspend

The Erase Suspend command allows the user to interrupt a Sector Erase operation and then perform data reads (not program) from a non-busy sector. This command is applicable ONLY during the Sector Erase operation and will be ignored if written during the Chip Erase or Programming operation. The Erase Suspend command (BOH) will be allowed only during the Sector Erase Operation that will include the sector erase time-out period after the Sector Erase commands $(30 \mathrm{H})$. Writing this command during the time-out will result in immediate termination of the time-out period. Any subsequent writes of the Sector Erase command will be taken as the Erase Resume command. Note that any other commands during the time out will reset the device to read mode. The addresses are don't-cares when writing the Erase Suspend or Erase Resume commands. When the Erase Suspend command is written during a Sector Erase operation, the device will take a maximum of $15 \mu \mathrm{~s}$ to suspend the erase operation. When the device has entered the erase-suspended mode, the RY/ $\overline{\mathrm{BY}}$ output pin and the DQ7 bit will be at logic " 1 ", and DQ6 will stop toggling. The user must use the address of the erasing sector for reading DQ_{6} and DQ_{7} to determine if the erase operation has been suspended. Further writes of the Erase Suspend command are ignored.

When the erase operation has been suspended, the device defaults to the erase-suspend-read mode. Reading data in this mode is the same as reading from the standard read mode except that the data must be read from sectors that have not been erase-suspended.

To resume the operation of Sector Erase, the Resume command $(30 \mathrm{H})$ should be written. Any further writes of the Resume command at this point will be ignore. Another Erase Suspend command can be written after the chip has resumed erasing.

Write Operation Status

Table 8 Hardware Sequence Flags

Status		DQ ${ }_{7}$	DQ6	DQ5	DQ3	DQ_{2} to DQ_{0}
In Progress	Embedded Program Algorithm	$\overline{\mathrm{DQ}}_{7}$	Toggle	0	0	($\overline{\mathrm{D}})$ (Note 1)
	Embedded Erase Algorithm	0	Toggle	0	1	
Erase Suspended Mode	Erase Suspend Read (Erase Suspended Sector)	1	1	0	1	
	Erase Suspend Read (Non-Erase Suspended Sector)	Data	Data	Data	Data	
Exceeded Time Limits	Embedded Program Algorithm	$\overline{\mathrm{DQ}_{7}}$	Toggle	1	0	
	Program/Erase in Embedded Erase Algorithm	0	Toggle	1	1	

Notes: 1. $\mathrm{DQ}_{0}, \mathrm{DQ}_{1}, \mathrm{DQ}_{2}$ are reserve pins for future use.
2. DQ_{8} to $\mathrm{DQ}_{15}=$ Don't Care for $\times 16$ mode.
3. DQ_{4} is for Fujitsu internal use only.

DQ7

Data Polling

The MBM29F200TA/BA device features Data Polling as a method to indicate to the host that the Embedded Algorithms are in progress or completed. During the Embedded Program Algorithm an attempt to read the device will produce the complement of the data last written to DQ7. Upon completion of the Embedded Program Algorithm, an attempt to read the device will produce the true data last written to DQ7. During the Embedded Erase Algorithm, an attempt to read the device will produce a " 0 " at the DQ7 output. Upon completion of the Embedded Erase Algorithm an attempt to read the device will produce a " 1 " at the DQ7 output. The flowchart for Data Polling (DQ7) is shown in Figure 18.

For chip erase, the $\overline{\text { Data }}$ Polling is valid after the rising edge of the sixth $\overline{W E}$ pulse in the six write pulse sequence. For sector erase, the Data Polling is valid after the last rising edge of the sector erase WE pulse. Data Polling must be performed at sector address within any of the sectors being erased and not a protected sector. Otherwise, the status may not be valid. Once the Embedded Algorithm operation is close to being completed, the MBM29F200TA/BA data pins (DQ7) may change asynchronously while the output enable ($\overline{\mathrm{OE}}$) is asserted low. This means that the device is driving status information on DQ_{7} at one instant of time and then that byte's valid data at the next instant of time. Depending on when the system samples the DQ_{7} output, it may read the status or valid data. Even if the device has completed the Embedded Algorithm operation and DQ7 has a valid data, the data outputs on DQ_{0} to DQ_{6} may be still invalid. The valid data on DQ_{0} to DQ_{7} will be read on the successive read attempts.
The Data Polling feature is only active during the Embedded Programming Algorithm, Embedded Erase Algorithm, or sector erase time-out (see Table 8).

See Figure 8 for the $\overline{\text { Data }}$ Polling timing specifications and diagrams.

DQ6

Toggle Bit

The MBM29F200TA/BA also features the "Toggle Bit" as a method to indicate to the host system that the Embedded Algorithms are in progress or completed.
During an Embedded Program or Erase Algorithm cycle, successive attempts to read ($\overline{O E}$ toggling) data from the device will result in DQ6 toggling between one and zero. Once the Embedded Program or Erase Algorithm cycle is completed, DQ6 will stop toggling and valid data will be read on the next successive attempts. During programming, the Toggle Bit is valid after the rising edge of the fourth WE pulse in the four write pulse sequence. For chip erase, the Toggle Bit is valid after the rising edge of the sixth WE pulse in the six write pulse sequence. For Sector erase, the Toggle Bit is valid after the last rising edge of the sector erase WE pulse. The Toggle Bit is active during the sector time out.
In programming, if the sector being written to is protected, the toggle bit will toggle for about 2μ s and then stop toggling without the data having changed. In erase, the device will erase all the selected sectors except for the ones that are protected. If all selected sectors are protected, the chip will toggle the toggle bit for about $100 \mu \mathrm{~s}$ and then drop back into read mode, having changed none of the data.
Either $\overline{C E}$ or $\overline{O E}$ toggling will cause the $D Q_{6}$ to toggle. In addition, an Erase Suspend/Resume command will cause DQ to toggle.
See Figure 9 for the Toggle Bit timing specifications and diagrams.

DQ5

Exceeded Timing Limits

DQ5 will indicate if the program or erase time has exceeded the specified limits (internal pulse count). Under these conditions DQ5 will produce a " 1 ". This is a failure condition which indicates that the program or erase cycle was not successfully completed. Data Polling is the only operating function of the device under this condition. The $\overline{\mathrm{CE}}$ circuit will partially power down the device under these conditions (to approximately 2 mA). The OE and WE pins will control the output disable functions as described in Tables 2 and 3.
The DQ5 failure condition may also appear if a user tries to program a non blank location without erasing. In this case the device locks out and never completes the Embedded Algorithm operation. Hence, the system never reads a valid data on DQ bit and DQ6 never stops toggling. Once the device has exceeded timing limits, the DQ5 bit will indicate a "1." Please note that this is not a device failure condition since the device was incorrectly used.

DQ3

Sector Erase Timer

After the completion of the initial sector erase command sequence the sector erase time-out will begin. DQ_{3} will remain low until the time-out is complete. Data Polling and Toggle Bit are valid after the initial sector erase command sequence.
If $\overline{\text { Data }}$ Polling or the Toggle Bit indicates the device has been written with a valid erase command, DQ_{3} may be used to determine if the sector erase timer window is still open. If DQ_{3} is high ("1") the internally controlled erase cycle has begun; attempts to write subsequent commands to the device will be ignored until the erase operation is completed as indicated by Data Polling or Toggle Bit. If DQ_{3} is low (" 0 "), the device will accept additional sector erase commands. To insure the command has been accepted, the system software should check the status of DQ_{3} prior to and following each subsequent sector erase command. If DQ_{3} were high on the second status check, the command may not have been accepted.
Refer to Table 8: Hardware Sequence Flags.

RY/BY

Ready/Busy

The MBM29F200TA/BA provides a RY/BY open-drain output pin as a way to indicate to the host system that the Embedded Algorithms are either in progress or completed. If the output is low, the device is busy with either a program or erase operation. If the output is high, the device is ready to accept any read/write or erase operation. When the RY/BY pin is low, the device will not accept any additional program or erase commands. If the MBM29F200TA/BA is placed in an Erase Suspend mode, the RY/ $\overline{B Y}$ output will be high. Also, since this is an open-drain output, many RY/ $\overline{B Y}$ pins can be tied together in parallel with a pull up resistor to V cc.
During programming, the RY/ $\overline{B Y}$ pin is driven low after the rising edge of the fourth $\overline{W E}$ pulse. During an erase operation, the $\mathrm{RY} / \overline{\mathrm{BY}}$ pin is driven low after the rising edge of the sixth $\overline{\mathrm{WE}}$ pulse. The RY/ $\overline{\mathrm{BY}}$ pin will indicate a busy condition during the RESET pulse. Refer to Figures 10 and 11 for a detailed timing diagram.

RESET

Hardware Reset

The MBM29F200TA/BA device may be reset by driving the RESET pin to VIL. The $\overline{\text { RESET pin has a pulse }}$ requirement and has to be kept low (V_{IL}) for at least 500 ns in order to properly reset the internal state machine. Any operation in the process of being executed will be terminated and the internal state machine will be reset to the read mode $20 \mu \mathrm{~s}$ after the RESET pin is driven low. Furthermore, once the RESET pin goes high, the device requires an additional 50 ns before it will allow read access. When the RESET pin is low, the device will be in the standby mode for the duration of the pulse and all the data output pins will be tri-stated. If a hardware reset occurs during a program or erase operation, the data at that particular location will be corrupted. Please note that the RY/BY output signal should be ignored during the RESET pulse. Refer to Figure 11 for the timing diagram. Refer to Temporary Sector Unprotection for additional functionality.
If hardware reset occurs during Embedded Erase Algorithm, there is a possibility that the erasing sector(s) cannot be used.

Byte/Word Configuration

The BYTE pin selects the byte (8 -bit) mode or word (16 bit) mode for the MBM29F200TA/BA device. When this pin is driven high, the device operates in the word (16 bit) mode. The data is read and programmed at DQo to DQ15. When this pin is driven low, the device operates in byte (8 bit) mode. Under this mode, the DQ ${ }_{15} / \mathrm{A}_{-1}$ pin becomes the lowest address bit and DQ8 to DQ14 bits are tri-stated. However, the command bus cycle is always an 8-bit operation and hence commands are written at DQ_{0} to DQ_{7} and the DQ_{8} to DQ_{15} bits are ignored. Refer to Figures 12 and 13 for the timing diagram.

Data Protection

The MBM29F200TA/BA is designed to offer protection against accidental erasure or programming caused by spurious system level signals that may exist during power transitions. During power up the device automatically resets the internal state machine in the Read mode. Also, with its control register architecture, alteration of the memory contents only occurs after successful completion of specific multi-bus cycle command sequences.

The device also incorporates several features to prevent inadvertent write cycles resulting form Vcc power-up and power-down transitions or system noise.

Low Vcc Write Inhibit

To avoid initiation of a write cycle during V_{cc} power-up and power-down, a write cycle is locked out for V_{cc} less than 3.2 V (typically 3.7 V). If $\mathrm{V}_{\mathrm{cc}}<\mathrm{V}_{\mathrm{LK}}$, the command register is disabled and all internal program/erase circuits are disabled. Under this condition the device will reset to the read mode. Subsequent writes will be ignored until the V_{cc} level is greater than VLko. It is the users responsibility to ensure that the control pins are logically correct to prevent unintentional writes when Vcc is above 3.2 V .
If Embedded Erase Algorithm is interrupted, there is possibility that the erasing sector(s) cannot be used.

MBM29F200TA-70/-90/-12/MBM29F200BA-70/-90/-12

Write Pulse "Glitch" Protection

Noise pulses of less than 5 ns (typical) on $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}$, or $\overline{\mathrm{WE}}$ will not initiate a write cycle.

Logical Inhibit

Writing is inhibited by holding any one of $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{I}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$, or $\overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{I}}$. To initiate a write cycle $\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$ must be a logical zero while $\overline{O E}$ is a logical one.

Power-Up Write Inhibit

Power-up of the device with $\overline{W E}=\overline{C E}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$ will not accept commands on the rising edge of $\overline{\mathrm{WE}}$. The internal state machine is automatically reset to the read mode on power-up.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature

$$
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$Ambient Temperature with Power Applied$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$Voltage with Respect to Ground All pins except A9, $\overline{\mathrm{OE}}, \overline{\operatorname{RESET}}$ (Note 1).................. -2.0 V to +7.0 V

Voc (Note 1) Respe (Not 1) -2.0 V to +7.0 V
Vcc (Note 1)-2.0 V to +13.5 V

Notes: 1. Minimum DC voltage on input or I/O pins is -0.5 V . During voltage transitions, inputs may negative overshoot V ss to -2.0 V for periods of up to 20 ns . Maximum DC voltage on output and I/O pins is Vcc +0.5 V . During voltage transitions, outputs may positive overshoot to $\mathrm{Vcc}+2.0 \mathrm{~V}$ for periods of up to 20 ns .
2. Minimum DC input voltage on $\mathrm{A}_{9}, \overline{\mathrm{OE}}, \overline{\mathrm{RESET}}$ pins are -0.5 V . During voltage transitions, $\mathrm{A}_{9}, \overline{\mathrm{OE}}, \overline{\mathrm{RESET}}$ pins may negative overshoot V_{ss} to -2.0 V for periods of up to 20 ns . Maximum DC input voltage on A , OE, RESET pins are +13.0 V which may positive overshoot to 13.5 V for periods of up to 20 ns .

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

RECOMENDED OPERATING RANGES

Commercial Devices
Ambient Temperature (TA) .. $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Vcc Supply Voltages ...4.50 V to +5.50 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

MAXIMUM OVERSHOOT

Figure 1 Maximum Negative Overshoot Waveform

Figure 2 Maximum Positive Overshoot Waveform

*: This waveform is applied for $\mathrm{A}_{9}, \overline{\mathrm{OE}}$, and RESET.

Figure 3 Maximum Positive Overshoot Waveform

DC CHARACTERISTICS

- TTL/NMOS Compatible

Parameter Symbol	Parameter Description	Test Conditions		Min.	Max.	Unit
l,	Input Leakage Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {ss }}$ to $\mathrm{V}_{\mathrm{cc}}, \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}}$ Max.		-	± 1.0	$\mu \mathrm{A}$
ILo	Output Leakage Current	$\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {ss }}$ to V_{cc}, $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}}$ Max.		-	± 1.0	$\mu \mathrm{A}$
ІІт	$\mathrm{A}_{9}, \overline{\mathrm{OE}}, \overline{\mathrm{RESET}}$ Inputs Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} \text { Max., } \\ & \mathrm{Ag}, \mathrm{OE}, \mathrm{RESET}=12.0 \mathrm{~V} \end{aligned}$		-	50	$\mu \mathrm{A}$
Icc1	Vcc Active Current (Note 1)	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{H}}$	Byte	-	35	mA
			Word		40	
Icc2	V cc Active Current (Note 2)	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}, \overline{\mathrm{OE}}=\mathrm{V}_{\text {IH }}$		-	50	mA
Icc3	V cc Current (Standby)	$\begin{aligned} & V_{c c}=\mathrm{V}_{\mathrm{cc}} \text { Max., } \\ & \mathrm{CE}=\mathrm{V}_{\mathrm{H}}, \text { RESET }=\mathrm{V}_{\mathrm{H}} \end{aligned}$		-	1.0	mA
Icc4	Vcc Current (Standby, Reset)	$\mathrm{V}_{c c}=\mathrm{V}_{c c}$ Max., RESET $=\mathrm{V}_{\mathrm{IL}}$		-	1.0	mA
VIL	Input Low Level	-		-0.5	0.8	V
V_{H}	Input High Level	-		2.0	Vcc +0.5	V
VID	Voltage for Autoselect and Sector Protection (As, $\overline{\mathrm{OE}}, \overline{\mathrm{RESET}}$) (Note 3)	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$		11.5	12.5	V
VoL	Output Low Voltage Level	$\mathrm{loL}=5.8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} \mathrm{Min}$.		-	0.45	V
Vor	Output High Voltage Level	$\mathrm{lot}=-2.5 \mathrm{~mA}, \mathrm{Vcc}=\mathrm{Vcc}$ Min.		2.4	-	V
Vıко	Low Vcc Lock-Out Voltage	-		3.2	4.2	V

Notes: 1. The Icc current listed includes both the DC operating current and the frequency dependent component (at 6 MHz).
The frequency component typically is $2 \mathrm{~mA} / \mathrm{MHz}$.
2. Icc active while Embedded Algorithm (program or erase) is in progress.
3. Applicable to sector protection function.

- CMOS Compatible

Parameter Symbol	Parameter Description	Test Conditions		Min.	Max.	Unit
lı	Input Leakage Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ss }}$ to $\mathrm{V}_{\mathrm{cc}}, \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} \mathrm{Max}$.		-	± 1.0	$\mu \mathrm{A}$
ILo	Output Leakage Current	Vout $=$ Vss to V_{cc}, $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} \mathrm{Max}$.		-	± 1.0	$\mu \mathrm{A}$
ІІт	Aя, $\overline{\mathrm{OE}}, \overline{\mathrm{RESET}}$ Inputs Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{V} \mathrm{Vc} \text { Max. } \\ & \mathrm{A}_{\mathrm{g}}, \overline{\mathrm{OE}}, \overline{\mathrm{RESET}}=12.0 \mathrm{~V} \end{aligned}$		-	50	$\mu \mathrm{A}$
lcc 1	Vcc Active Current (Note 1)	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{LL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$	Byte	-	35	mA
			Word		40	
Icc2	Vcc Active Current (Note 2)	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$		-	50	mA
Icca	Vcc Current (Standby)	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} \mathrm{Max.}_{\mathrm{I}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{cc}} \pm 0.3 \mathrm{~V}, \\ & \mathrm{RESET}=\mathrm{V}_{\mathrm{cc}} \pm 0.3 \mathrm{~V} \end{aligned}$		-	100	$\mu \mathrm{A}$
Icc4	Vcc Current (Standby, Reset)	$\begin{aligned} & \mathrm{Vcc}=\mathrm{Vcc} \mathrm{Max}_{\mathrm{l}}, \\ & \mathrm{RESET}=\mathrm{Vss} \pm 0.3 \mathrm{~V} \end{aligned}$		-	100	$\mu \mathrm{A}$
VIL	Input Low Level	-		-0.5	0.8	V
V_{H}	Input High Level	-		$0.7 \times$ Vcc	V cc +0.3	V
VID	Voltage for Autoselect and Sector Protection (Aя, OE, RESET) (Note 3)	$\mathrm{Vcc}=5.0 \mathrm{~V}$		11.5	12.5	V
Voı	Output Low Voltage Level	$\mathrm{loL}=5.8 \mathrm{~mA}, \mathrm{~V} \mathrm{cc}=\mathrm{V} \mathrm{cc}$ Min.		-	0.45	V
Voh1	Output High Voltage Level	$\mathrm{loH}=-2.5 \mathrm{~mA}, \mathrm{~V}_{\text {cc }}=\mathrm{V}_{\mathrm{cc}} \mathrm{Min}$.		$0.85 \times \mathrm{V}$ cc	-	V
Vон2		$\mathrm{loh}=-100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}}$ Min.		Vcc -0.4	-	V
Vıko	Low Vcc Lock-Out Voltage	-		3.2	4.2	V

Notes: 1. The Icc current listed includes both the DC operating current and the frequency dependent component (at 6 MHz).
The frequency component typically is $2 \mathrm{~mA} / \mathrm{MHz}$.
2. Icc active while Embedded Algorithm (program or erase) is in progress.
3. Applicable to sector protection function.

AC CHARACTERISTICS

- Read Only Operations Characteristics

Parameter Symbols		Description	Test Setup		$\left(\begin{array}{l} -70 \\ \text { Note 1) } \end{array}\right.$	$\left(\begin{array}{c} -90 \\ \text { (Note 2) } \end{array}\right.$	$\left(\begin{array}{c} -12 \\ \text { Note 2) } \end{array}\right.$	Unit
JEDEC	Standard							
tavav	trc	Read Cycle Time	-	Min.	70	90	120	ns
tavav	tacc	Address to Output Delay	$\begin{aligned} & \overline{\overline{C E}}=V_{\text {IL }} \\ & \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$	Max.	70	90	120	ns
telav	tce	Chip Enable to Output Delay	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$	Max.	70	90	120	ns
talav	toe	Output Enable to Output Delay	-	Max.	30	35	50	ns
tehaz	tDF	Chip Enable to Output High-Z	-	Max.	20	20	30	ns
tghaz	tDF	Output Enable to Output High-Z	-	Max.	20	20	30	ns
taxax	toн	Output Hold Time From Addresses, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$, Whichever Occurs First	-	Min.	0	0	0	ns
-	tready	$\overline{\text { RESET Pin Low to Read Mode }}$	-	Max.	20	20	20	us
-	$\begin{aligned} & \text { telfL } \\ & \text { teler } \end{aligned}$	$\overline{\mathrm{CE}}$ or BYTE Switching Low or High	-	Max.	5	5	5	ns

Notes:

1. Test Conditions: Output Load: 1 TTL gate and 100 pF Input rise and fall times: 5 ns
Input pulse levels: 0.0 V to 3.0 V
Timing measurement reference level
Input: 1.5 V
Output: 1.5 V
2. Test Conditions: Output Load: 1 TTL gate and 100 pF Input rise and fall times: 20 ns Input pulse levels: 0.45 V to 2.4 V
Timing measurement reference level
Input: 0.8 V and 2.0 V
Output: 0.8 V and 2.0

Figure 4 Test Conditions

- Write/Erase/Program Operations Alternate WE Controlled Writes

Parameter Symbols		Description			-70	-90	-12	Unit
JEDEC	Standard							
tavav	twc	Write Cycle Time		Min.	70	90	120	ns
tavwL	tAs	Address Setup Time		Min.	0	0	0	ns
twlax	taH	Address Hold Time		Min.	45	45	50	ns
tovw	tos	Data Setup Time		Min.	30	45	50	ns
twhox	toh	Data Hold Time		Min.	0	0	0	ns
-	toes	Output Enable Setup Time		Min.	0	0	0	ns
-	toen	Output Enable Hold Time	Read	Min.	0	0	0	ns
			Toggle and Data Polling	Min.	10	10	10	ns
tghwi	tghwi	Read Recover Time Before Write		Min.	0	0	0	ns
telw	tcs	CE Setup Time		Min.	0	0	0	ns
twher	tch	$\overline{\text { CE Hold Time }}$		Min.	0	0	0	ns
twewh	twp	Write Pulse Width		Min.	35	45	50	ns
twhwL	twPH	Write Pulse Width High		Min.	20	20	20	ns
twhwH1	twhwH1	Byte Programming Operation		Typ.	8	8	8	$\mu \mathrm{s}$
twhwh2	twhwHz	Sector Erase Operation (Note 1)		Typ.	1	1	1	sec
				Max.	15	15	15	sec
-	tvcs	Vcc Setup Time		Min.	50	50	50	$\mu \mathrm{s}$
-	tvLht	Voltage Transition Time (Note 2)		Min.	4	4	4	$\mu \mathrm{s}$
-	twpp	Write Pulse Width (Note 2)		Min.	100	100	100	$\mu \mathrm{s}$
-	toesp	OE Setup Time to WE Active (Note 2)		Min.	4	4	4	$\mu \mathrm{s}$
-	tcsp	$\overline{\text { CE Setup Time to WE Active (Note 2) }}$		Min.	4	4	4	$\mu \mathrm{s}$
-	trp	$\overline{\text { RESET Pulse Width }}$		Min.	500	500	500	ns
-	tflaz	BYTE Switching Low to Output High-Z		Max.	20	30	30	ns
-	teusy	Program/Erase Valid to RY/BY Delay		Min.	30	35	50	ns

Notes: 1. This does not include the preprogramming time.
2. Applicable to sector protection function.

- Write/Erase/Program Operations

Alternate CE Controlled Writes

Parameter Symbols		Description			-70	-90	-12	Unit
JEDEC	Standard							
tavav	twc	Write Cycle Time		Min.	70	90	120	ns
tavel	tAs	Address Setup Time		Min.	0	0	0	ns
telax	$\mathrm{taH}^{\text {H }}$	Address Hold Time		Min.	45	45	50	ns
tover	tos	Data Setup Time		Min.	30	45	50	ns
tehdx	toh	Data Hold Time		Min.	0	0	0	ns
-	toes	Output Enable Setup Time		Min.	0	0	0	ns
-	tоен	Output Enable Hold Time	Read	Min.	0	0	0	ns
			Toggle and Data Polling	Min.	10	10	10	ns
tghel	tghel	Read Recover Time Before Write		Min.	0	0	0	ns
twlel	tws	WE Setup Time		Min.	0	0	0	ns
tehwh	twh	WE Hold Time		Min.	0	0	0	ns
teLeh	tcp	$\overline{\text { CE Pulse Width }}$		Min.	35	45	50	ns
tehel	tcph	$\overline{\mathrm{CE}}$ Pulse Width High		Min.	20	20	20	ns
twhwh	twhwh 1	Byte Programming Operation		Typ.	8	8	8	$\mu \mathrm{s}$
twнwнz	twhwhz	Sector Erase Operation (Note)		Typ.	1	1	1	sec
				Max.	15	15	15	sec
-	tvos	Vcc Setup Time		Typ.	50	50	50	$\mu \mathrm{s}$
-	trp	RESET Pulse Width		Min.	500	500	500	ns
-	tfloz	$\overline{\text { BYTE Switching Low to Output High-Z }}$		Max.	20	30	30	ns
-	tBusy	Program/Erase Valid to RY/BY Delay		Min.	30	35	50	ns

Note: This does not include the preprogramming time.

SWITCHING WAVEFORMS

- Key to Switching Waveforms
$\left.\begin{array}{lll|}\hline \text { WAVEFORM } & \begin{array}{l}\text { INPUTS } \\ \text { Must Be } \\ \text { Steady }\end{array} & \begin{array}{l}\text { OUTPUTS } \\ \text { Will Be } \\ \text { Steady }\end{array} \\ \text { May } \\ \text { Change } \\ \text { from H to L }\end{array} \quad \begin{array}{l}\text { Will Be } \\ \text { Changing } \\ \text { from H to L }\end{array}\right\}$

Figure 4 AC Waveforms for Read Operations

Notes: 1. PA is address of the memory location to be programmed.
2. PD is data to be programmed at byte address.
3. $\overline{\mathrm{DQ}}_{7}$ is the output of the complement of the data written to the device.
4. Dout is the output of the data written to the device.
5. Figure indicates last two bus cycles out of four bus cycle sequence.

6 . These waveforms are for the $\times 16$ mode.

Figure 5 Alternate WE Controlled Program Operation Timings

Notes: 1. PA is address of the memory location to be programmed.
2. PD is data to be programmed at byte address.
3. $\overline{\mathrm{DQ}}_{7}$ is the output of the complement of the data written to the device.
4. Dout is the output of the data written to the device.
5. Figure indicates last two bus cycles out of four bus cycle sequence.

6 . These waveforms are for the $\times 16$ mode.

Figure 6 Alternate $\overline{\text { CE Controlled Program Operation Timings }}$

Notes: 1. SA is the sector address for Sector Erase. Addresses $=5555 \mathrm{H}$ (Word), AAAAH (Byte) for Chip Erase.
2. These waveforms are for the $\times 16$ mode. The addresses differ from $\times 8$ mode.

Figure 7 AC Waveforms Chip/Sector Erase Operations
$\overline{C E}$
$\overline{O E}$

WE

*: $\mathrm{DQ}_{7}=$ Valid Data (The device has completed the Embedded operation).
Figure 8 AC Waveforms for Data Polling during Embedded Algorithm Operations
$\overline{C E}$ \qquad

* $:$ DQ6 $_{6}$ Stops Toggling (The device has completed the Embedded operation).

Figure 9 AC Waveforms for Toggle Bit during Embedded Algorithm Operations

Figure $10 \mathrm{RY} / \overline{\mathrm{BY}}$ Timing Diagram During Program/Erase Operations
$\overline{C E}$

RY/BY

RESET

Figure $11 \quad \overline{\text { RESET }} /$ RY $/ \overline{B Y}$ Timing Diagram

Figure 13 BYTE Timing Diagram for Read Operations

Figure 15 AC Waveforms for Sector Protection

Figure 16 Temporary Sector Unprotection

EMBEDDED ALGORITHMS

Program Command Sequence* (Address/Command):

* : The sequence is applied for $\times 16$ mode.

The addresses differ from $\times 8$ mode.

Figure 17 Embedded Programming Algorithm

Table 9 Embedded Programming Algorithm

Bus Operations	Command Sequence	Comments
Standby *		
Write	Program	Valid Address/Data Sequence
Read		Data Polling to Verify Programming
Standby ${ }^{*}$		Compare Data Output to Data Expected

[^0]
EMBEDDED ALGORITHMS

Chip Erase Command Sequence*
(Address/Command):

* : The sequence is applied for $\times 16$ mode. The addresses differ from $\times 8$ mode.

Individual Sector/Multiple Sector* Erase Command Sequence (Address/Command):

Figure 18 Embedded Erase Algorithm

Table 10 Embedded Erase Algorithm

Bus Operations	Command Sequence	Comments
Standby* *		
Write	Erase	
Read		$\overline{\text { Data Polling to Verify Erasure }}$
Standby*		Compare Output to FFH

* : Device is either powered-down, erase inhibit or program inhibit.

Note: DQ_{7} is rechecked even if $\mathrm{DQ}_{5}=$ " 1 " because DQ_{7} may change simultaneously with DQ_{5}.

Figure 19 Data Polling Algorithm

Note: DQ_{6} is rechecked even if $\mathrm{DQ}_{5}=$ " 1 " because DQ_{6} may stop toggling at the same time as DQ5 changing to " 1 ".

Figure 20 Toggle Bit Algorithm

Figure 21 Sector Protection Algorithm

Notes: 1. All protected sectors are unprotected.
2. All previously protected sectors are protected once again.

Figure 22 Temporary Sector Unprotection Algorithm

TYPICAL CHARACTERISTICS CURVES

(Continued)

ERASE AND PROGRAMMING PERFORMANCE

Parameter	Limits			Unit	Comment
	Min.	Typ.	Max.		sec
Sector Erase Time	-	1	Excludes 00H programming prior to erasure		
Byte Programming Time	-	8	500	μs	Excludes system-level overhead
Chip Programming Time	-	2.1	13	sec	Excludes system-level overhead
Erase/Program Cycle	100,000	-	-	Cycles	

- TSOP PIN CAPACITANCE

Parameter Symbol	Parameter Description	Test Setup	Typ.	Max.	Unit
Cin	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=0$	8	9	pF
Cout	Output Capacitance	Vout $=0$	8	10	pF
CIN2	Control Pin Capacitance	$\mathrm{V}_{\mathrm{IN}}=0$	8.5	11.5	pF

Note: Test conditions $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

SOP PIN CAPACITANCE

Parameter Symbol	Parameter Description	Test Setup	Typ.	Max.	Unit
Cin	Input Capacitance	$\mathrm{V}_{\text {IN }}=0$	7.5	9	pF
Cout	Output Capacitance	Vout $=0$	8	10	pF
Cin2	Control Pin Capacitance	$\mathrm{V}_{\text {IN }}=0$	8.5	11	pF

Note: Test conditions $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

MBM29F200TA-70/-90/-12/MBM29F200BA-70/-90/-12

PACKAGE DIMENSIONS

48-pin Plastic TSOP

(FPT-48P-M19)

© 1996 FUUTSU LIMTED F48029S-2C-2
Dimensions in mm(inches)

44-pin Plastic SOP
(FPT-44P-M16)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan
Tel: (044) 754-3763
Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, U.S.A.
Tel: (408) 922-9000
Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE. LIMITED
\#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).
CAUTION:
Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

[^0]: * : Device is either powered-down, erase inhibit or program inhibit.

